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Modalities for Asyn
hronous Distributed SystemsCarlo Montangero1 and Laura Semini21 Dip. di Informati
a, Universit�a di Pisa, monta�di.unipi.it2 Dip. di Sistemi e Informati
a, Universit�a di Firenze, semini�dsi.unifi.itAbstra
t. The purpose of this work is to establish some foundationalground for the logi
s that 
an be used to reason on distributed sys-tems 
ommuni
ating asyn
ronously via message passing, e.g. distributedwork
ow systems. These systems rule out syn
hronized lo
al 
lo
ks, andreasoning on global time or state: message passing is the only possibleme
hanism for 
ommuni
ation, and therefore for 
ausality a
ross 
om-ponents. We introdu
e adtl, a logi
 with modalities for time and lo
al-ity. We show that its axiom system 
hara
terizes the 
lass of stru
turesthat re
e
t the nature of the 
ausal relation when 
ommuni
ation isasyn
ronous. Correspondingly, the axioms are su
h that any attempt toformulate in the logi
 properties about the unspeakable entities, like aglobal state, results in a 
ontradi
tion.1 Introdu
tionThe design of quality software for distributed systems is be
oming moreand more 
riti
al, due to the 
urrent impa
t of software on every te
hni
ala

omplishment, and the fa
t that networks pervade any 
urrent appli-
ation. The problem has two fa
ets: the 
omplexity of the systems underdevelopment, and the need of 
ontinuous update to keep the pa
e withmoving requirements. We are 
onvin
ed that a design pro
ess based onformal re�nements, when 
entered on the system ar
hite
ture and appliedin the early phases of development, would mitigate the problems relatedto both 
omplexity and 
hange. To this end, we have been working on are�nement 
al
ulus for distributed systems that integrates in a naturalway lo
al re�nements (i.e. within a single 
omponent) and 
oordinationtemplates [12, 9, 10℄.The essential element of the approa
h is the logi
 whi
h is used tospe
ify the 
omponents of the distributed systems and their intera
tions.Indeed, the approa
h 
an be e�e
tive only if it 
omes with simple, work-able 
on
epts and notations, well mat
hed to the underlying paradigm.We are interested in distributed work{
ow systems, a 
lass of systemsthat are be
oming more and more needed to solve problems in domains
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2like geogra�
ally distributed manufa
turing, ele
troni
 
ommer
e, round{the{
lo
k world{wide software development, et
. They essentally 
onsistof loosely 
oupled asyn
hronous long running servi
es.In the 
ontext of this re�nement{
entered design approa
h, in [10℄we introdu
ed Oikos adtl, an extention of Unity [3℄ to deal with 
ompo-nents and events. As in Unity, in Oikos adtl the emphasys is on high leveloperators and appli
ation oriented theorems , to be used in the every-day a
tivity of formal design. Complementarily, the purpose of this workis to establish some foundational ground: we provide a 
hara
terizationof the 
lass of frames whi
h have a stru
ture that re
e
ts the essentialproperties of the 
ausal relation in distributed systems 
ommuni
atingasyn
ronously via message passing. In this paper we will refer to this
lass of systems as asyn
hronous systems.Before delving into the te
hni
alities, in the rest of this introdu
tionwe dis
uss informally the stru
ture of the frames, and its impa
t on thelogi
 presented here, espe
ially with respe
t to the kind of properties ofthe 
omputations that 
an be meaningfully expressed.Asyn
hronous systems are 
hara
terized in [1℄ by the following prop-erties: there are no bounds on the relative speeds of pro
esses as wellas on message delays. Therefore, they rule out syn
hronized lo
al 
lo
ks,and reasoning on global time: message passing is the only possible me
h-anism for 
ommuni
ation. This restri
ts the ways in whi
h events in the
omputation 
an be ordered. In an asyn
hronous system, two events are
onstrained to o

ur in a 
ertain order only if the o

urren
e of the �rstmay a�e
t the out
ome of the se
ond, that is only if there is a 
ow ofinformation from the �rst to the se
ond. This in turn implies that, if theevents o

ur in di�erent pro
esses, they must be linked by the ex
hange ofa message. This establishes an asymmetry between the pro
esses involvedin the 
ommuni
ation, and is the obvious root of the di�eren
ies with dis-tributed systems based on syn
hronous 
ommuni
ation. These di�eren
esare dis
ussed extensively in the se
tion devoted to related works.As it is fairly 
ommon in the spe
i�
ation of distributed systems,we use a modal logi
, with modalities for time and lo
ality. Oikos adtlhas been designed to support an essential fa
et of any design method:the 
omposition of spe
i�
ations. It fosters the expression of the globalproperties of a system in terms of the lo
al properties and the intera
tionsof the 
omponents. However, the global properties that may hold in asystem are 
onstrained by the underlying 
ausal stru
ture: any attemptto express properties that entail the syn
ronization of remote 
omponentsmust end up in a 
ontradi
tion.
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3In our setting, the 
ausal relation 
an be 
onveniently depi
ted bydiagrams, reminis
ent of Lamport's spa
e{time diagrams [6℄. They showthe evolution of the states of the 
omponents, as the result of internaltransitions or message passing. Fig 1 shows an example: wij is the jth stateof 
omponent i. Plain arrows denote single steps, while dotted arrowsdenote paths 
omposed of an unde�ned number of steps.Fig. 1. A spa
e{time diagram(1) w10 // w11
))RRRRRR

// w1k //(2) w20 // w2j // w2j+1 // //

''OOOOOO //

66mmmmmmm(3) w30 // w3l //In parti
ular, the diagram shows that wj+1 in 
omponent 2 is in 
ausalrelation with wk in 
omponent 1 and withwl in 3 as well, without entailinga 
ausal relation of w2j+1 with a sort of global state made of w1k and w3l .Indeed, in asyn
hronous systems, no set of lo
al states 
an be seenas a global one. Consequently, no logi
al formula 
an be true, whi
h re-quires some properties of states in di�erent 
omponents to hold at thesame time instant. To satisfy this 
onstraint, though maintaining the pos-sibility of reasoning on global properties of a system, we de�ne the logi
adtl: formulae are interpreted over states of spa
e{time diagrams, and the
onjun
tion of properties of remote states is always false.The main result of the paper is the de�nition of an axiom system foradtl, whi
h 
hara
terizes the spa
e{time diagrams stru
ture.The organization of the paper is the following. Se
tions 2 and 3 presentthe syntax and the semanti
s of adtl, respe
tively. Se
tion 4 introdu
es theaxioms. Their 
orresponden
e to the properties of the underlying frame isshown in Se
tion 5. Before some 
on
luding remarks, Se
tion 6 dis
ussesrelated work.2 The logi
 adtlThe syntax of adtl formulae is given over a denumerable set Prop ofpropositional symbols, and a �nite, nonempty set I of 
omponent names.We 
onsider a �xed set I = f1; : : : ; ng, and we let p, q; : : : range overProp, and i, j; : : : range over I.
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4De�nition 1. An adtl formula F is de�ned by:F ::= p j :F j F ^ F j 
�F j �F j [i℄FModality 
� means \in all states rea
hable in one step", and � means\in all rea
hable states", as usual. The new modality [i℄ is read \if in ithen". Informally, [i℄F holds in a state w if either F holds in w, or if w isnot a state of 
omponent i. Formal semanti
s is provided with Def. 4.Some dual modalities 
an be introdu
ed,�F def� :�:F 
�F def� :
� :F hiiF def� : [i℄:FThey read \in some rea
hable state", \in some state rea
hable in onestep", and \in i and", respe
tively.Example 1.�[h1ip ! �h2iq℄: this is a typi
al meaningful formula. Its intended mean-ing is that whenever p holds in 1, q will hold in 2 (and there will bea 
ommuni
ation in between, from 1 to 2).�[h1ip ^ h2iq℄: 
onversely, this is a typi
al unsatis�able formula. Formu-lae are interpreted in lo
al states, and no state 
an belong to morethan a 
omponent.�[i℄F says that F is an invariant of 
omponent i.3 Semanti
sIn our setting, the interpretation domain for a formula is a spa
e{timediagram shaping like the one in Fig. 1, 
omposed of n noetherian denu-merable 
hains, ea
h representing the evolution of a single 
omponent,and an n-partite oriented graph, representing the asyn
hronous 
ommu-ni
ations among the 
omponents.Next, we de�ne the frames for asyn
hronous systems, and list theproperties satis�ed by the a

essibility relations. In Se
t. 4, we will providethe axioms that 
hara
terize these properties.De�nition 2. A frame F is a tuple hW; R
; R1; : : : ; Rn i, where Wis a set of worlds; R
 � W �W is an a

essibility relation 
alled \nextstate"; for ea
h i = 1; : : : ; n, Ri � W �W is an a

essibility relation
alled \in i".
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5Worlds in W represent the states of the 
omponents. The \in i" relationshave enough stru
ture to partition W . Indeed, we require:Ri is a partial identity: (w;w0) 2 Ri ! w = w0. The only a

essiblestate from w a

ording to Ri, if any, is w itself.Disjun
tion of the Ri's: Ri \Rj = ; for any pair of i 6= j. Ea
h worldin W is a state of at most one 
omponent.Re
exivity of Si2I Ri: 8w: (w;w) 2 Si2I Ri. Ea
h world in W is astate of some 
omponent.We will write w 2 i (w belongs to 
omponent i) as a shorthand for(w;w) 2 Ri.The a

essibility relation \next state" is 
onstrained to be linear inea
h 
omponent. Besides, a

ess to other 
omponents is also linear: thereis a unique state whi
h is the re
ipient of a 
ommuni
ation from a 
om-ponent to another one. That is, for any two pairs (w;w0) and (w;w00) inR
, either w0 = w00 or w0 and w00 belong to distinguished 
omponents.Formally, the required properties of \next state" are:Distributed linearity of R
: for all i; w; w0, and w00, (w;w0) 2 R
,(w;w00) 2 R
, w0; w00 2 i imply w0 = w00.Stepping of 
� through �: the a

essibility relation used to give se-manti
s to � is the transitive and re
exive 
losure R�
 of R
.It is useful to distinguish the lo
al next states, i.e. those due to lo
al tran-sitions, from the remote ones, i.e. those due to the passing of a messagefrom one 
omponent to another. For ea
h i in I, we de�ne the next i{lo
alstate a

essibility relation R
i , as the setf(w; w0) j (w; w0) 2 R
 and w; w0 2 igThe next i{lo
al state a

essibility is exampli�ed in Fig. 1 by the pairof states (wij ; wij+1). We require that R
i is total, i.e. ea
h world has asu

essor in the same 
omponent:Totality of R
i: for any w 2 i there exists a w0 su
h that (w;w0) 2 R
i .We now de�ne the models for adtl formulae. As usual, a model is a frameenri
hed with a valuation fun
tion whi
h de�nes the truth of propositionalformulae on the worlds of the frame [5℄.
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6De�nition 3. A model on a frame F = hW; R
; R1; : : : ; Rni is atuple M = hF ; V i where V is a mapping (valuation):V :W ! 2PropA formula F is true in a modelM if and only if F is true in all the initialworlds ofM. The truth of a formula in a world ofM is de�ned as follows.De�nition 4. Given a model M = hW; R
; R1; : : : ; Rn; V i, and aworld w 2W :hM; wi j= p i� p 2 V (w)hM; wi j= :F i� hM; wi 6j= FhM; wi j= F ^ F 0 i� hM; wi j= F and hM; wi j= F 0hM; wi j= 
�F i� 8w0 : wR
w0:hM; w0i j= FhM; wi j= �F i� 8w0 : wR�
w0:hM; w0i j= FhM; wi j= [i℄F i� 8w0 : wRiw0:hM; w0i j= FExample 2. As an example, the stru
ture (ea
h world is labelled with thepropositions holding in it):(1) p // p; q
((PPPPPP

// p // p // p; q //

''OOOOOO(2) p; q // q // r // s //

&&NNNNNN t //

88pppppp(3) r // s // q //is a model of the formulae:� [1℄ p : p holds in all states of 
omponent 1 (�h1ip is false instead);[1℄ p ^ [3℄ r : p holds in the initial state of 
omponent 1, and r holds inthe initial state of 
omponent 3;� [h2i q ! (� h1i p ^ � h3i q)℄ : Any state in 2 satisfying q is eventuallyfollowed by a state in 1 satisfying p, and by a state in 3 satisfying q;� (h1i q ! 
� h2i true) : A state of 
omponent 1 satisfying q is imme-diately followed by a state in 2, that is, every time q holds in 1, thereis a 
ommuni
ation from 1 to 2;
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74 Axiom SystemIn this se
tion we present the axiom system for adtl. F , F 0, F 00 are adtlformulae built on the set I = f1; : : : ; ng, and i; j 2 I.Axioms of the propositional 
al
ulus:P1 F ! (F 0 ! F )P2 (F ! (F 0 ! F 00))! ((F ! F 0)! F ! F 00))P3 ((:F ! :F 0)! ((:F ! F 0)! F ))Axiom K, for all modalities:K� �(F ! F 0) ! (�F ! �F 0)K
� 
�(F ! F 0) ! (
�F ! 
�F 0)K[i℄ [i℄(F ! F 0) ! ([i℄F ! [i℄F 0)The following axioms are those normally used to de�ne a temporal logi
.Axioms t1 and t2 model the stepping of 
� through �. Axioms 4 andT de�ne the transitive and re
exive properties of time, respe
tively, andaxiom D states totality: a next state always exists.t1 �(F ! 
�F )! (F ! �F )t2 �F ! 
��F4 �F ! ��FT �F ! FD 
�F ! 
�FThe last set of axioms deal with the new modality [i℄. Corresponden
ewith properties of the frames is dis
ussed in Se
t. 5.a[i℄ F ! [i℄Fb[i℄ [1℄F ^ : : : ^ [n℄F ! F
[i℄ [i℄[j℄F with i 6= j.d[i℄ 
�hiiF ! 
�[i℄Fe[i℄ hii
�F ! 
�hiiF
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8Finally, we have the inferen
e rules:MP F F ! F 0F 0Ne
 F�FExample 3. The following formulae are 
onsequen
es of the axioms:1) hiihiiF $ hiiF2) [i℄F $ [i℄[i℄F3) F ! [i℄hjiF4) hiiF ^ hjiF 0 $ hiihji(F ^ F 0)5) [i℄(F _ F 0) $ [i℄F _ [i℄F 0Proposition 1. (Soundness) If F 
an be derived, then F is valid.Proof. The soundness of the axiom system is not diÆ
ult to show. Weprove, as an example, the 
orre
tness of 
[i℄.We need to prove that hM; wi j= [i℄[j℄F holds, for any modelM, andany world w. By de�nition, hM; wi j= [i℄[j℄F if and only if 8w0 : (w;w0) 2Ri: hM; w0i j= [j℄F .We re
all that, a

ording to Ri, w 
an only a

ess itself, and distin-guish two 
ases: (w;w) 62 Ri and (w;w) 2 Ri. In the �rst 
ase, the thesisis immediately true. In the se
ond 
ase we are redu
ed to prove thathM; wi j= [j℄F . This is true sin
e Ri and Rj are disjoint. utThe 
orresponden
e results of the next se
tion are a �rst step towardsproving 
ompleteness.5 Corresponden
eWe show that the axioms of the previous se
tion 
orrespond to the re-quirements on the a

essibility relations listed in Se
t. 3, i.e. they 
har-a
terize the frames we are interested in.A formula F is said to be valid on a frame F if and only if it is validin all the models M built on F . A formula F 
hara
terizes a 
lass C offrames if and only if C = fF j F is valid inFg.It is well known that axioms P1, P2, P3, K�, K
�, t1, t2, 4,T, and D 
hara
terize the frames with a total next state relation (R
),
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9stepping through a re
exive and transitive relation (R�
). Corresponden
eresults for the modalities [i℄ are listed below. Some of these results arenot new (for instan
e the statement of Prop. 2 
an be found in [2℄),however the axioms for [i℄ do not hold in the modal logi
s normally usedin 
omputer s
ien
e. We think that presenting these proofs might provideuseful insights into the new modality.Proposition 2. The formula F ! [i℄F 
hara
terizes the 
lass of framesC = fhW; C; R1; : : : ; Rni j (w;w0) 2 Ri ! w = w0gProof. (): if F 2 C, then F ! [i℄F is valid in F). By 
ontradi
tion:suppose F ! [i℄F is not valid. This means that there exists a modelM = hF ; V i, and a world w inW with hM; wi j= F and hM; wi 6j= [i℄F ,i.e., there exists w0 su
h that (w; w0) 2 Ri and hM; w0i 6j= F . But, sin
e(w; w0) 2 Ri implies w = w0, we must have hM; wi 6j= F , a 
ontradi
tion.((: if the formula F ! [i℄F is valid in a frame F , then F 2 C). By
ontradi
tion: let F be a frame, F ! [i℄F be valid in it, but F 62 C. Thismeans that there exist a pair of worlds (w;w0) 2 Ri with w 6= w0. Sin
eF ! [i℄F is valid in F for all F , in parti
ular p! [i℄p is valid in F . Now,
onsider the model M = hF ; V i, where V (w) = p and V (w0) = ;. Wehave, hM; wi j= p and hM; wi 6j= [i℄p, a 
ontradi
tion. utProposition 3. The formula [1℄F ^ : : : ^ [n℄F ! F 
hara
terizes the
lass of frames C = fhW; C; R1; : : : ; Rni j SiRi is re
exivegProof. We 
onsider n = 2. The generalization to the 
ase of arbitrary nis straight.(): if F 2 C, then [1℄F ^ [2℄F ! F is valid in F). By 
ontradi
tion:suppose [1℄F ^ [2℄F ! F not to be valid. This means that there exists amodelM = hF ; V i, and a world w inW with hM; wi j= [1℄F ^ [2℄F (i.e.,hM; wi j= [1℄F and hM; wi j= [2℄F ), and hM; wi 6j= F . Sin
e R1 [ R2is re
exive, (w;w) 2 R1 or (w;w) 2 R2. In both 
ases the 
onjun
tionof hM; wi j= [1℄F and hM; wi j= [2℄F imply hM; wi j= F , whi
h is a
ontradi
tion.((: if [1℄F ^ [2℄F ! F is valid in a frame F , then F 2 C). By
ontradi
tion, with F = p: let [1℄p ^ [2℄p ! p be valid in a frame F 62 C,i.e. in a frame in
luding a world w su
h that (w;w) 62 R1 [ R2. We takea model M = hF ; V i, where V (w0) = p for all w0 with (w;w0) 2 R1 or(w;w0) 2 R2 and V (w00) = ; for all other worlds. Clearly, hM; wi j= [1℄pand hM; wi j= [2℄p, 
onsequently hM; wi j= p, a 
ontradi
tion. ut
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10Proposition 4. The formula [i℄[j℄F 
hara
terizes the 
lass of framesC = fhW; C; R1; : : : ; Rni j Ri \Rj = ;g, for i 6= j.The proof follows the usual s
hema and it is skipped here, and the sameholds for the proofs of the following propositions. Prop. 5 states thatd[i℄ 
hara
terizes the distributed linearity of R
, Prop. 6 states that e[i℄
orresponds to the totality of R
i .Proposition 5. The formula 
�hiiF ! 
�[i℄F 
hara
terizes the 
lassof frames C = fhW; C; R
; R1; : : : ; Rni j (w;w0); (w;w00) 2 R
, w0; w00 2i, imply w0 = w00gProposition 6. The formula hii
�F ! 
�hiiF 
hara
terizes the 
lassof frames C = fhW; C; R
; R1; : : : ; Rni j w 2 Ci implies 9w0 2 i su
hthat (w; w0) 2 R
gFinally, we observe that relation Ri is symmetri
 and transitive. Indeed,we proved that formulae F ! [i℄hiiF , and [i℄F ! [i℄[i℄, 
hara
terizingsymmetry and transitivity, respe
tively, are a 
onsequen
e of the axiomsof Se
t. 4.6 Related WorkVarious extensions of temporal logi
 to deal with distributed systems havebeen de�ned in the literature. We present and dis
uss the proposals whi
hare more 
losely related to ours.One of the �rst logi
s de�ned to reason on distributed systems isTTL [8℄. In this logi
, for ea
h lo
al state of the system, a visibility fun
-tion spe
i�es whi
h information of remote 
omponents is a

essible. Thevisibility fun
tion is de�ned on the basis of a relation among states whi
his symmetri
 in the 
ase of states belonging to distinguished 
omponents.A tra
e based extension of linear time temporal logi
, 
alled TrPTL,has been de�ned in [13℄ (see also [14℄). The logi
 has been designed tobe interpreted over in�nite tra
es, i.e., labelled partial orders of a
tions,whi
h respe
t some dependen
e relations asso
iated to the alphabet ofa
tions.In [7℄, a temporal logi
, StepTL, is de�ned and interpreted over mul-tistep transition systems. These are a well known extension of transitionsystems, allowing to des
ribe as 
on
urrent the steps of 
omputation that
an a
tually be exe
uted in parallel. A multistep transition system thus
ontains transitions of the form sA s0, where A is a set of a
tions, insteadof a single one.
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11Three distinguished logi
s are presented in [11℄ to des
ribe systems
omposed of sets of 
ommuni
ating agents. The logi
s di�erentiate on theamount of information ea
h agent 
an have on the other agents running onthe system, but share a 
ommon setting: agents 
ommuni
ate via 
ommona
tions. The models for these logi
s are runs of networks of syn
hronizingautomata. The logi
s D0 and D1 presented in [4℄ are based on a similarapproa
h.Anyway, in all these proposals, 
omponents 
ommuni
ate via some formof syn
hronization, and logi
 formulae are interpreted on models shaping:1 : // a // b // 
 //2 : // d // e��OO // f //In these models, and 
onsequently in any logi
 de�ned over them, it isnot possible to express the asymmetri
 nature of 
ausality as requiredwhen modelling the behaviour of agents 
ommuni
ating asyn
hronouslyby message passing. Indeed, in the previous model we 
an both assertthat a 
auses f and that d 
auses 
.Moreover, the model above satis�es a formula like � (h1ib ^ h2ie),impli
itly talking about global states. Indeed, if we interpret a logi
 inthese models, the only way to prevent formulae on 
ompound states frombeing true in the same time instant is to restri
t the formulae syntax insome (often unnatural) way.Con
lusionsWe have introdu
ed adtl, a logi
 to reason on asyn
hronous distributedsystems 
ommuni
ating via message passing. Models for adtl are based onspa
e{time diagrams, whi
h re
e
t the asymmetri
 nature of the 
ausalrelation in this 
ase. Further, models built on spa
e{time diagrams falsifyany formula predi
ating about global states. Finally, we have introdu
eda sound axiom system for adtl and proved its 
orresponden
e to the prop-erties of the 
onsidered frames.An immediate extension of the work presented in this paper is toprove 
ompleteness and to explore de
idability in adtl. Sin
e Oikos adtl
an be de�ned in terms of adtl, de
idability results would �nd a naturalappli
ation in the re�nement 
al
ulus we are developing for asyn
hronoussystems.
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