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Abstract. The purpose of this work is to establish some foundational
ground for the logics that can be used to reason on distributed sys-
tems communicating asyncronously via message passing, e.g. distributed
workflow systems. These systems rule out synchronized local clocks, and
reasoning on global time or state: message passing is the only possible
mechanism for communication, and therefore for causality across com-
ponents. We introduce adtl, a logic with modalities for time and local-
ity. We show that its axiom system characterizes the class of structures
that reflect the nature of the causal relation when communication is
asyncronous. Correspondingly, the axioms are such that any attempt to
formulate in the logic properties about the unspeakable entities, like a
global state, results in a contradiction.

1 Introduction

The design of quality software for distributed systems is becoming more
and more critical, due to the current impact of software on every technical
accomplishment, and the fact that networks pervade any current appli-
cation. The problem has two facets: the complexity of the systems under
development, and the need of continuous update to keep the pace with
moving requirements. We are convinced that a design process based on
formal refinements, when centered on the system architecture and applied
in the early phases of development, would mitigate the problems related
to both complexity and change. To this end, we have been working on a
refinement calculus for distributed systems that integrates in a natural
way local refinements (i.e. within a single component) and coordination
templates [12,9, 10].

The essential element of the approach is the logic which is used to
specify the components of the distributed systems and their interactions.
Indeed, the approach can be effective only if it comes with simple, work-
able concepts and notations, well matched to the underlying paradigm.
We are interested in distributed work—flow systems, a class of systems
that are becoming more and more needed to solve problems in domains
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like geografically distributed manufacturing, electronic commerce, round
the—clock world—wide software development, etc. They essentally consist
of loosely coupled asynchronous long running services.

In the context of this refinement—centered design approach, in [10]
we introduced Oikos_adtl, an extention of Unity [3] to deal with compo-
nents and events. As in Unity, in Oikos_adtl the emphasys is on high level
operators and application oriented theorems , to be used in the every-
day activity of formal design. Complementarily, the purpose of this work
is to establish some foundational ground: we provide a characterization
of the class of frames which have a structure that reflects the essential
properties of the causal relation in distributed systems communicating
asyncronously via message passing. In this paper we will refer to this
class of systems as asynchronous systems.

Before delving into the technicalities, in the rest of this introduction
we discuss informally the structure of the frames, and its impact on the
logic presented here, especially with respect to the kind of properties of
the computations that can be meaningfully expressed.

Asynchronous systems are characterized in [1] by the following prop-
erties: there are no bounds on the relative speeds of processes as well
as on message delays. Therefore, they rule out synchronized local clocks,
and reasoning on global time: message passing is the only possible mech-
anism for communication. This restricts the ways in which events in the
computation can be ordered. In an asynchronous system, two events are
constrained to occur in a certain order only if the occurrence of the first
may affect the outcome of the second, that is only if there is a flow of
information from the first to the second. This in turn implies that, if the
events occur in different processes, they must be linked by the exchange of
a message. This establishes an asymmetry between the processes involved
in the communication, and is the obvious root of the differencies with dis-
tributed systems based on synchronous communication. These differences
are discussed extensively in the section devoted to related works.

As it is fairly common in the specification of distributed systems,
we use a modal logic, with modalities for time and locality. Oikos_adtl
has been designed to support an essential facet of any design method:
the composition of specifications. It fosters the expression of the global
properties of a system in terms of the local properties and the interactions
of the components. However, the global properties that may hold in a
system are constrained by the underlying causal structure: any attempt
to express properties that entail the syncronization of remote components
must end up in a contradiction.
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In our setting, the causal relation can be conveniently depicted by
diagrams, reminiscent of Lamport’s space-time diagrams [6]. They show
the evolution of the states of the components, as the result of internal
transitions or message passing. Fig 1 shows an example: w; is the j*! state
of component 4. Plain arrows denote single steps, while dotted arrows
denote paths composed of an undefined number of steps.

Fig. 1. A space-time diagram

(1) wé . 11)11 ...................................................................................... . w; ........... >

) W2 o 2 o 2L s B e B >
0 J Jj+1

(3) wg ...................................................................................... - “)13 ............................... >

In particular, the diagram shows that w;y; in component 2 is in causal
relation with wy, in component 1 and with w; in 3 as well, without entailing
a causal relation of “’?H with a sort of global state made of w, and w}.

Indeed, in asynchronous systems, no set of local states can be seen
as a global one. Consequently, no logical formula can be true, which re-
quires some properties of states in different components to hold at the
same time instant. To satisfy this constraint, though maintaining the pos-
sibility of reasoning on global properties of a system, we define the logic
adtl: formulae are interpreted over states of space time diagrams, and the
conjunction of properties of remote states is always false.

The main result of the paper is the definition of an axiom system for
adtl, which characterizes the space-time diagrams structure.

The organization of the paper is the following. Sections 2 and 3 present
the syntax and the semantics of adtl, respectively. Section 4 introduces the
axioms. Their correspondence to the properties of the underlying frame is
shown in Section 5. Before some concluding remarks, Section 6 discusses
related work.

2 The logic adtl

The syntax of adtl formulae is given over a denumerable set Prop of
propositional symbols, and a finite, nonempty set I of component names.
We consider a fixed set I = {1, ..., n}, and we let p, ¢, ... range over
Prop, and 1, j, ... range over I.
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Definition 1. An adtl formula F' is defined by:

Fu=p|~F|FAF|OgF |OF | [i|F

Modality O means “in all states reachable in one step”, and [] means

“in all reachable states”, as usual. The new modality [i] is read “if in i

then”. Informally, [i]F" holds in a state w if either F' holds in w, or if w is

not a state of component 4. Formal semantics is provided with Def. 4.
Some dual modalities can be introduced,

QU
<~
=9
QU
<~

le ef le

OF 2 -0O-F OpF 2 —Op-F (IVF 2 ~[i]-F

They read “in some reachable state”, “in some state reachable in one
step”, and “in ¢ and”, respectively.

FEzxzample 1.

O[1)p — O(2)¢]: thisis a typical meaningful formula. Its intended mean-
ing is that whenever p holds in 1, ¢ will hold in 2 (and there will be
a communication in between, from 1 to 2).

O(L)p A (2)q]: conversely, this is a typical unsatisfiable formula. Formu-
lae are interpreted in local states, and no state can belong to more
than a component.

O[#]F says that F' is an invariant of component i.

3 Semantics

In our setting, the interpretation domain for a formula is a space time
diagram shaping like the one in Fig. 1, composed of n noetherian denu-
merable chains, each representing the evolution of a single component,
and an n-partite oriented graph, representing the asynchronous commu-
nications among the components.

Next, we define the frames for asynchronous systems, and list the
properties satisfied by the accessibility relations. In Sect. 4, we will provide
the axioms that characterize these properties.

Definition 2. A frame F is a tuple (W, Ro, Ry, ..., R, ), where W
is a set of worlds; Ro C W x W is an accessibility relation called “next
state”; for each 1 = 1,...,n, Ry C W X W 1is an accessibility relation
called “in i”.
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Worlds in W represent the states of the components. The “in i” relations
have enough structure to partition W. Indeed, we require:

R; is a partial identity: (w,w') € R; — w = w'. The only accessible
state from w according to R;, if any, is w itself.

Disjunction of the R;’s: R; N R; = () for any pair of i # j. Each world
in W is a state of at most one component.

Reflexivity of | J;.; Ri: Vw. (w,w) € J;c; Ri. Each world in W is a
state of some component.

We will write w € i (w belongs to component i) as a shorthand for
(w,w) € R;.

The accessibility relation “next state” is constrained to be linear in
each component. Besides, access to other components is also linear: there
is a unique state which is the recipient of a communication from a com-
ponent to another one. That is, for any two pairs (w,w') and (w,w") in
Ro, either w' = w"” or w' and w” belong to distinguished components.
Formally, the required properties of “next state” are:

Distributed linearity of Ro: for all 4, w, w', and w", (w,w') € Ro,
(w,w") € Ro, w',w" € i imply w' = w".

Stepping of O through [I: the accessibility relation used to give se-
mantics to [J is the transitive and reflexive closure Rf, of Ro.

It is useful to distinguish the local next states, i.e. those due to local tran-
sitions, from the remote ones, i.e. those due to the passing of a message
from one component to another. For each i in I, we define the next i local
state accessibility relation Ro,, as the set

{(w, w') | (w, w') € Ro and w, w' € i}

The next i local state accessibility is examplified in Fig. 1 by the pair
of states (wj, wj ;). We require that Ro, is total, i.e. each world has a
successor in the same component:

Totality of Ro,: for any w € i there exists a w’ such that (w,w') € Ro, .
We now define the models for adtl formulae. As usual, a model is a frame

enriched with a valuation function which defines the truth of propositional
formulae on the worlds of the frame [5].
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Definition 3. A model on a frame F = (W, Ro, Ry, ..., Ry,) is a
tuple M = (F, V) where V is a mapping (valuation):

VW — 2Frop

A formula F' is true in a model M if and only if F' is true in all the initial
worlds of M. The truth of a formula in a world of M is defined as follows.

Definition 4. Given a model M = (W, Ro, Ry, ..., R,, V), and a
world w € W :

M,w) = p iff peV(w)

M,w) = —F iff (M,w) EF

M,w) = FAF iff (M,w)|=F and (M,w) = F’
M.w) = OpF iff Vu': wRow (M, u') = F
M,w) = OF iff Yu': wREw' (M, w') =F
Mw) | [[F  iff Vo' wRw . (M,w') = F

Ezxzample 2. As an example, the structure (each world is labelled with the
propositions holding in it):

(1) DDy Qi 3 D e /;p ........... = Dy Qe -
(2) Dy G >q>>r ............................ >S\>t ................................................... S
(3) P B G e >q ................................................... >

is a model of the formulae:

O[1]p : p holds in all states of component 1 (O(1)p is false instead);

[1]p A [3]7 : p holds in the initial state of component 1, and r holds in
the initial state of component 3;

O2)g — (O(1)p A O(3)q)] : Any state in 2 satisfying ¢ is eventually
followed by a state in 1 satisfying p, and by a state in 3 satisfying ¢;

O(1)g — O¢(2)true) : A state of component 1 satisfying ¢ is imme-
diately followed by a state in 2, that is, every time ¢ holds in 1, there
is a communication from 1 to 2;
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4 Axiom System

In this section we present the axiom system for adtl. F, F', F" are adtl
formulae built on the set I = {1, ..., n}, and i, j € I.

Axioms of the propositional calculus:

P1
P2

P3

F— (Fl = F)
(F = (Fl - F")—> (F—F)—>F—F")

(nF —--F)—> ((-F— F')—>F))

Axiom K, for all modalities:

KO
KOn

K]

OF — F') — (OF - OF")
On(F — F') — (OpF — OpF’)

[](F = F) = ([]F = [i]F)

The following axioms are those normally used to define a temporal logic.
Axioms t1 and t2 model the stepping of Og through [J. Axioms 4 and
T define the transitive and reflexive properties of time, respectively, and
axiom D states totality: a next state always exists.

t1

t2

4

T

D

O(F — OgF) — (F — 0OF)
OF — OpOF

UorF — OOr

UrF — F

OnF — O(}F

The last set of axioms deal with the new modality [i]. Correspondence
with properties of the frames is discussed in Sect. 5.

ali]

F — [i|F

[1F A ... N[n]F = F
[P withi# .
Op(i)F — Opli]|F

(’i)ODF — Oy (Z)F
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Finally, we have the inference rules:

F F—>F
MP -
FI
F
Nec S
OF

Ezample 3. The following formulae are consequences of the axioms:
(Q)(D)F < (i)F
[(]F <« [i][i]F

1)
)
) F o= [)F
)
)

wW N

4
S

()F NG < ()G (F AF)
[(FVEF) < [{|FVI[i]F

Proposition 1. (Soundness) If F' can be derived, then F' is valid.

Proof. The soundness of the axiom system is not difficult to show. We
prove, as an example, the correctness of cfi].

We need to prove that (M, w) = [i][j]F holds, for any model M, and
any world w. By definition, (M, w) = [i][j]F if and only if Vo' : (w,w') €
R;. (M, uw") = [j]F.

We recall that, according to R;, w can only access itself, and distin-
guish two cases: (w,w) € R; and (w,w) € R;. In the first case, the thesis
is immediately true. In the second case we are reduced to prove that
(M, w) |= [§]F. This is true since R; and R; are disjoint. O

The correspondence results of the next section are a first step towards
proving completeness.

5 Correspondence

We show that the axioms of the previous section correspond to the re-
quirements on the accessibility relations listed in Sect. 3, i.e. they char-
acterize the frames we are interested in.

A formula F' is said to be valid on a frame F if and only if it is valid
in all the models M built on F. A formula F' characterizes a class C of
frames if and only if C = {F | F'is valid in F}.

It is well known that axioms P1, P2, P3, KU, KO, t1, t2, 4,
T, and D characterize the frames with a total next state relation (Ro),
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stepping through a reflexive and transitive relation (R,). Correspondence
results for the modalities [i] are listed below. Some of these results are
not new (for instance the statement of Prop. 2 can be found in [2]),
however the axioms for [i] do not hold in the modal logics normally used
in computer science. We think that presenting these proofs might provide
useful insights into the new modality.

Proposition 2. The formula F — [i]F characterizes the class of frames
C={(W,C, Ry, ..., Ry) | (wyw')€R — w=uw'}

Proof. (=: if F € C, then F — [i]F is valid in F). By contradiction:
suppose F' — [i]F' is not valid. This means that there exists a model
M = (F, V), and a world w in W with (M, w) = F and (M, w)  [i]F,
i.e., there exists w' such that (w, w') € R; and (M, w') #~ F. But, since
(w, w') € R; implies w = w', we must have (M, w) [~ F, a contradiction.
(«<: if the formula F' — [¢]F is valid in a frame F, then F € C). By
contradiction: let F be a frame, F' — [i|F be valid in it, but F ¢ C. This
means that there exist a pair of worlds (w,w') € R; with w # w'. Since
F — [i]F is valid in F for all F, in particular p — [i]p is valid in F. Now,
consider the model M = (F, V), where V(w) = p and V(w') = (. We

have, (M, w) = p and (M, w) [~ [i]p, a contradiction.
O

Proposition 3. The formula [1|JF A ... A[n]F — F characterizes the
class of frames C = {(W, C, Ry, ..., Ry,) | U, R; is reflexive}

Proof. We consider n = 2. The generalization to the case of arbitrary n
is straight.

(=:if F € C, then [1]F A [2]F — F is valid in F). By contradiction:
suppose [1]F' A [2]F — F not to be valid. This means that there exists a
model M = (F, V), and a world w in W with (M, w) = [1]F A [2]F (i.e.,
(M, w) |= [1]F and (M, w) |= [2]F), and (M, w) # F. Since Ry U Ry
is reflexive, (w,w) € Ry or (w,w) € Rs. In both cases the conjunction
of (M, w) = [1]F and (M, w) = [2]F imply (M, w) |= F, which is a
contradiction.

(<:if [1JF A [2]F — F is valid in a frame F, then F € C). By
contradiction, with F' = p: let [1]p A [2]p — p be valid in a frame F ¢ C,
i.e. in a frame including a world w such that (w,w) ¢ R; U Ry. We take
a model M = (F, V), where V(w') = p for all w' with (w,w’) € Ry or
(w,w') € Ry and V(w") = 0 for all other worlds. Clearly, (M, w) = [1]p
and (M, w) = [2]p, consequently (M, w) |= p, a contradiction.

O
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Proposition 4. The formula [i][j]F characterizes the class of frames

C={(W,C, Ry, ..., R,) | RiNR; = 0}, fori#j.

The proof follows the usual schema and it is skipped here, and the same
holds for the proofs of the following propositions. Prop. 5 states that
d[i] characterizes the distributed linearity of Ro, Prop. 6 states that e]i]
corresponds to the totality of Ro,.

Proposition 5. The formula Oy (i)F — Opli|F characterizes the class
of framesC = {{W, C, Ro, Ry, ..., Ry,) | (w,w'), (w,w") € Ro, w', w" €

i, imply w' = w"}

Proposition 6. The formula (i)OnF — O¢(i)F characterizes the class
of frames C = {{W, C, Ro, Ry, ..., R,) | w € C; implies 3w’ € i such
that (w, w') € Ro}

Finally, we observe that relation R; is symmetric and transitive. Indeed,
we proved that formulae F — [i|(i)F, and [i]FF — [i][i], characterizing
symmetry and transitivity, respectively, are a consequence of the axioms
of Sect. 4.

6 Related Work

Various extensions of temporal logic to deal with distributed systems have
been defined in the literature. We present and discuss the proposals which
are more closely related to ours.

One of the first logics defined to reason on distributed systems is
TTL [8]. In this logic, for each local state of the system, a visibility func-
tion specifies which information of remote components is accessible. The
visibility function is defined on the basis of a relation among states which
is symmetric in the case of states belonging to distinguished components.

A trace based extension of linear time temporal logic, called TrPTL,
has been defined in [13] (see also [14]). The logic has been designed to
be interpreted over infinite traces, i.e., labelled partial orders of actions,
which respect some dependence relations associated to the alphabet of
actions.

In [7], a temporal logic, StepTL, is defined and interpreted over mul-
tistep transition systems. These are a well known extension of transition
systems, allowing to describe as concurrent the steps of computation that
can actually be executed in parallel. A multistep transition system thus
contains transitions of the form s A s’, where A is a set of actions, instead
of a single one.
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Three distinguished logics are presented in [11] to describe systems
composed of sets of communicating agents. The logics differentiate on the
amount of information each agent can have on the other agents running on
the system, but share a common setting: agents communicate via common
actions. The models for these logics are runs of networks of synchronizing
automata. The logics Dy and D, presented in [4] are based on a similar
approach.

Anyway, in all these proposals, components communicate via some form
of synchronization, and logic formulae are interpreted on models shaping;:

1 S () e S T o O s .
)
2 S [T S @ s . f ............................ -

In these models, and consequently in any logic defined over them, it is
not possible to express the asymmetric nature of causality as required
when modelling the behaviour of agents communicating asynchronously
by message passing. Indeed, in the previous model we can both assert
that a causes f and that d causes c.

Moreover, the model above satisfies a formula like ¢ ((1)b A (2)e),
implicitly talking about global states. Indeed, if we interpret a logic in
these models, the only way to prevent formulae on compound states from
being true in the same time instant is to restrict the formulae syntax in
some (often unnatural) way.

Conclusions

We have introduced adtl, a logic to reason on asynchronous distributed
systems communicating via message passing. Models for adtl are based on
space—time diagrams, which reflect the asymmetric nature of the causal
relation in this case. Further, models built on space time diagrams falsify
any formula predicating about global states. Finally, we have introduced
a sound axiom system for adtl and proved its correspondence to the prop-
erties of the considered frames.

An immediate extension of the work presented in this paper is to
prove completeness and to explore decidability in adtl. Since Oikos_adtl
can be defined in terms of adtl, decidability results would find a natural
application in the refinement calculus we are developing for asynchronous
systems.
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