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Modalities for Asynhronous Distributed SystemsCarlo Montangero1 and Laura Semini21 Dip. di Informatia, Universit�a di Pisa, monta�di.unipi.it2 Dip. di Sistemi e Informatia, Universit�a di Firenze, semini�dsi.unifi.itAbstrat. The purpose of this work is to establish some foundationalground for the logis that an be used to reason on distributed sys-tems ommuniating asynronously via message passing, e.g. distributedworkow systems. These systems rule out synhronized loal loks, andreasoning on global time or state: message passing is the only possiblemehanism for ommuniation, and therefore for ausality aross om-ponents. We introdue adtl, a logi with modalities for time and loal-ity. We show that its axiom system haraterizes the lass of struturesthat reet the nature of the ausal relation when ommuniation isasynronous. Correspondingly, the axioms are suh that any attempt toformulate in the logi properties about the unspeakable entities, like aglobal state, results in a ontradition.1 IntrodutionThe design of quality software for distributed systems is beoming moreand more ritial, due to the urrent impat of software on every tehnialaomplishment, and the fat that networks pervade any urrent appli-ation. The problem has two faets: the omplexity of the systems underdevelopment, and the need of ontinuous update to keep the pae withmoving requirements. We are onvined that a design proess based onformal re�nements, when entered on the system arhiteture and appliedin the early phases of development, would mitigate the problems relatedto both omplexity and hange. To this end, we have been working on are�nement alulus for distributed systems that integrates in a naturalway loal re�nements (i.e. within a single omponent) and oordinationtemplates [12, 9, 10℄.The essential element of the approah is the logi whih is used tospeify the omponents of the distributed systems and their interations.Indeed, the approah an be e�etive only if it omes with simple, work-able onepts and notations, well mathed to the underlying paradigm.We are interested in distributed work{ow systems, a lass of systemsthat are beoming more and more needed to solve problems in domains



www.manaraa.com

2like geogra�ally distributed manufaturing, eletroni ommere, round{the{lok world{wide software development, et. They essentally onsistof loosely oupled asynhronous long running servies.In the ontext of this re�nement{entered design approah, in [10℄we introdued Oikos adtl, an extention of Unity [3℄ to deal with ompo-nents and events. As in Unity, in Oikos adtl the emphasys is on high leveloperators and appliation oriented theorems , to be used in the every-day ativity of formal design. Complementarily, the purpose of this workis to establish some foundational ground: we provide a haraterizationof the lass of frames whih have a struture that reets the essentialproperties of the ausal relation in distributed systems ommuniatingasynronously via message passing. In this paper we will refer to thislass of systems as asynhronous systems.Before delving into the tehnialities, in the rest of this introdutionwe disuss informally the struture of the frames, and its impat on thelogi presented here, espeially with respet to the kind of properties ofthe omputations that an be meaningfully expressed.Asynhronous systems are haraterized in [1℄ by the following prop-erties: there are no bounds on the relative speeds of proesses as wellas on message delays. Therefore, they rule out synhronized loal loks,and reasoning on global time: message passing is the only possible meh-anism for ommuniation. This restrits the ways in whih events in theomputation an be ordered. In an asynhronous system, two events areonstrained to our in a ertain order only if the ourrene of the �rstmay a�et the outome of the seond, that is only if there is a ow ofinformation from the �rst to the seond. This in turn implies that, if theevents our in di�erent proesses, they must be linked by the exhange ofa message. This establishes an asymmetry between the proesses involvedin the ommuniation, and is the obvious root of the di�erenies with dis-tributed systems based on synhronous ommuniation. These di�erenesare disussed extensively in the setion devoted to related works.As it is fairly ommon in the spei�ation of distributed systems,we use a modal logi, with modalities for time and loality. Oikos adtlhas been designed to support an essential faet of any design method:the omposition of spei�ations. It fosters the expression of the globalproperties of a system in terms of the loal properties and the interationsof the omponents. However, the global properties that may hold in asystem are onstrained by the underlying ausal struture: any attemptto express properties that entail the synronization of remote omponentsmust end up in a ontradition.
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3In our setting, the ausal relation an be onveniently depited bydiagrams, reminisent of Lamport's spae{time diagrams [6℄. They showthe evolution of the states of the omponents, as the result of internaltransitions or message passing. Fig 1 shows an example: wij is the jth stateof omponent i. Plain arrows denote single steps, while dotted arrowsdenote paths omposed of an unde�ned number of steps.Fig. 1. A spae{time diagram(1) w10 // w11
))RRRRRR

// w1k //(2) w20 // w2j // w2j+1 // //

''OOOOOO //

66mmmmmmm(3) w30 // w3l //In partiular, the diagram shows that wj+1 in omponent 2 is in ausalrelation with wk in omponent 1 and withwl in 3 as well, without entailinga ausal relation of w2j+1 with a sort of global state made of w1k and w3l .Indeed, in asynhronous systems, no set of loal states an be seenas a global one. Consequently, no logial formula an be true, whih re-quires some properties of states in di�erent omponents to hold at thesame time instant. To satisfy this onstraint, though maintaining the pos-sibility of reasoning on global properties of a system, we de�ne the logiadtl: formulae are interpreted over states of spae{time diagrams, and theonjuntion of properties of remote states is always false.The main result of the paper is the de�nition of an axiom system foradtl, whih haraterizes the spae{time diagrams struture.The organization of the paper is the following. Setions 2 and 3 presentthe syntax and the semantis of adtl, respetively. Setion 4 introdues theaxioms. Their orrespondene to the properties of the underlying frame isshown in Setion 5. Before some onluding remarks, Setion 6 disussesrelated work.2 The logi adtlThe syntax of adtl formulae is given over a denumerable set Prop ofpropositional symbols, and a �nite, nonempty set I of omponent names.We onsider a �xed set I = f1; : : : ; ng, and we let p, q; : : : range overProp, and i, j; : : : range over I.
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4De�nition 1. An adtl formula F is de�ned by:F ::= p j :F j F ^ F j �F j �F j [i℄FModality � means \in all states reahable in one step", and � means\in all reahable states", as usual. The new modality [i℄ is read \if in ithen". Informally, [i℄F holds in a state w if either F holds in w, or if w isnot a state of omponent i. Formal semantis is provided with Def. 4.Some dual modalities an be introdued,�F def� :�:F �F def� :� :F hiiF def� : [i℄:FThey read \in some reahable state", \in some state reahable in onestep", and \in i and", respetively.Example 1.�[h1ip ! �h2iq℄: this is a typial meaningful formula. Its intended mean-ing is that whenever p holds in 1, q will hold in 2 (and there will bea ommuniation in between, from 1 to 2).�[h1ip ^ h2iq℄: onversely, this is a typial unsatis�able formula. Formu-lae are interpreted in loal states, and no state an belong to morethan a omponent.�[i℄F says that F is an invariant of omponent i.3 SemantisIn our setting, the interpretation domain for a formula is a spae{timediagram shaping like the one in Fig. 1, omposed of n noetherian denu-merable hains, eah representing the evolution of a single omponent,and an n-partite oriented graph, representing the asynhronous ommu-niations among the omponents.Next, we de�ne the frames for asynhronous systems, and list theproperties satis�ed by the aessibility relations. In Set. 4, we will providethe axioms that haraterize these properties.De�nition 2. A frame F is a tuple hW; R; R1; : : : ; Rn i, where Wis a set of worlds; R � W �W is an aessibility relation alled \nextstate"; for eah i = 1; : : : ; n, Ri � W �W is an aessibility relationalled \in i".
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5Worlds in W represent the states of the omponents. The \in i" relationshave enough struture to partition W . Indeed, we require:Ri is a partial identity: (w;w0) 2 Ri ! w = w0. The only aessiblestate from w aording to Ri, if any, is w itself.Disjuntion of the Ri's: Ri \Rj = ; for any pair of i 6= j. Eah worldin W is a state of at most one omponent.Reexivity of Si2I Ri: 8w: (w;w) 2 Si2I Ri. Eah world in W is astate of some omponent.We will write w 2 i (w belongs to omponent i) as a shorthand for(w;w) 2 Ri.The aessibility relation \next state" is onstrained to be linear ineah omponent. Besides, aess to other omponents is also linear: thereis a unique state whih is the reipient of a ommuniation from a om-ponent to another one. That is, for any two pairs (w;w0) and (w;w00) inR, either w0 = w00 or w0 and w00 belong to distinguished omponents.Formally, the required properties of \next state" are:Distributed linearity of R: for all i; w; w0, and w00, (w;w0) 2 R,(w;w00) 2 R, w0; w00 2 i imply w0 = w00.Stepping of � through �: the aessibility relation used to give se-mantis to � is the transitive and reexive losure R� of R.It is useful to distinguish the loal next states, i.e. those due to loal tran-sitions, from the remote ones, i.e. those due to the passing of a messagefrom one omponent to another. For eah i in I, we de�ne the next i{loalstate aessibility relation Ri , as the setf(w; w0) j (w; w0) 2 R and w; w0 2 igThe next i{loal state aessibility is exampli�ed in Fig. 1 by the pairof states (wij ; wij+1). We require that Ri is total, i.e. eah world has asuessor in the same omponent:Totality of Ri: for any w 2 i there exists a w0 suh that (w;w0) 2 Ri .We now de�ne the models for adtl formulae. As usual, a model is a frameenrihed with a valuation funtion whih de�nes the truth of propositionalformulae on the worlds of the frame [5℄.
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6De�nition 3. A model on a frame F = hW; R; R1; : : : ; Rni is atuple M = hF ; V i where V is a mapping (valuation):V :W ! 2PropA formula F is true in a modelM if and only if F is true in all the initialworlds ofM. The truth of a formula in a world ofM is de�ned as follows.De�nition 4. Given a model M = hW; R; R1; : : : ; Rn; V i, and aworld w 2W :hM; wi j= p i� p 2 V (w)hM; wi j= :F i� hM; wi 6j= FhM; wi j= F ^ F 0 i� hM; wi j= F and hM; wi j= F 0hM; wi j= �F i� 8w0 : wRw0:hM; w0i j= FhM; wi j= �F i� 8w0 : wR�w0:hM; w0i j= FhM; wi j= [i℄F i� 8w0 : wRiw0:hM; w0i j= FExample 2. As an example, the struture (eah world is labelled with thepropositions holding in it):(1) p // p; q
((PPPPPP

// p // p // p; q //

''OOOOOO(2) p; q // q // r // s //

&&NNNNNN t //

88pppppp(3) r // s // q //is a model of the formulae:� [1℄ p : p holds in all states of omponent 1 (�h1ip is false instead);[1℄ p ^ [3℄ r : p holds in the initial state of omponent 1, and r holds inthe initial state of omponent 3;� [h2i q ! (� h1i p ^ � h3i q)℄ : Any state in 2 satisfying q is eventuallyfollowed by a state in 1 satisfying p, and by a state in 3 satisfying q;� (h1i q ! � h2i true) : A state of omponent 1 satisfying q is imme-diately followed by a state in 2, that is, every time q holds in 1, thereis a ommuniation from 1 to 2;
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74 Axiom SystemIn this setion we present the axiom system for adtl. F , F 0, F 00 are adtlformulae built on the set I = f1; : : : ; ng, and i; j 2 I.Axioms of the propositional alulus:P1 F ! (F 0 ! F )P2 (F ! (F 0 ! F 00))! ((F ! F 0)! F ! F 00))P3 ((:F ! :F 0)! ((:F ! F 0)! F ))Axiom K, for all modalities:K� �(F ! F 0) ! (�F ! �F 0)K� �(F ! F 0) ! (�F ! �F 0)K[i℄ [i℄(F ! F 0) ! ([i℄F ! [i℄F 0)The following axioms are those normally used to de�ne a temporal logi.Axioms t1 and t2 model the stepping of � through �. Axioms 4 andT de�ne the transitive and reexive properties of time, respetively, andaxiom D states totality: a next state always exists.t1 �(F ! �F )! (F ! �F )t2 �F ! ��F4 �F ! ��FT �F ! FD �F ! �FThe last set of axioms deal with the new modality [i℄. Correspondenewith properties of the frames is disussed in Set. 5.a[i℄ F ! [i℄Fb[i℄ [1℄F ^ : : : ^ [n℄F ! F[i℄ [i℄[j℄F with i 6= j.d[i℄ �hiiF ! �[i℄Fe[i℄ hii�F ! �hiiF
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8Finally, we have the inferene rules:MP F F ! F 0F 0Ne F�FExample 3. The following formulae are onsequenes of the axioms:1) hiihiiF $ hiiF2) [i℄F $ [i℄[i℄F3) F ! [i℄hjiF4) hiiF ^ hjiF 0 $ hiihji(F ^ F 0)5) [i℄(F _ F 0) $ [i℄F _ [i℄F 0Proposition 1. (Soundness) If F an be derived, then F is valid.Proof. The soundness of the axiom system is not diÆult to show. Weprove, as an example, the orretness of [i℄.We need to prove that hM; wi j= [i℄[j℄F holds, for any modelM, andany world w. By de�nition, hM; wi j= [i℄[j℄F if and only if 8w0 : (w;w0) 2Ri: hM; w0i j= [j℄F .We reall that, aording to Ri, w an only aess itself, and distin-guish two ases: (w;w) 62 Ri and (w;w) 2 Ri. In the �rst ase, the thesisis immediately true. In the seond ase we are redued to prove thathM; wi j= [j℄F . This is true sine Ri and Rj are disjoint. utThe orrespondene results of the next setion are a �rst step towardsproving ompleteness.5 CorrespondeneWe show that the axioms of the previous setion orrespond to the re-quirements on the aessibility relations listed in Set. 3, i.e. they har-aterize the frames we are interested in.A formula F is said to be valid on a frame F if and only if it is validin all the models M built on F . A formula F haraterizes a lass C offrames if and only if C = fF j F is valid inFg.It is well known that axioms P1, P2, P3, K�, K�, t1, t2, 4,T, and D haraterize the frames with a total next state relation (R),
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9stepping through a reexive and transitive relation (R�). Correspondeneresults for the modalities [i℄ are listed below. Some of these results arenot new (for instane the statement of Prop. 2 an be found in [2℄),however the axioms for [i℄ do not hold in the modal logis normally usedin omputer siene. We think that presenting these proofs might provideuseful insights into the new modality.Proposition 2. The formula F ! [i℄F haraterizes the lass of framesC = fhW; C; R1; : : : ; Rni j (w;w0) 2 Ri ! w = w0gProof. (): if F 2 C, then F ! [i℄F is valid in F). By ontradition:suppose F ! [i℄F is not valid. This means that there exists a modelM = hF ; V i, and a world w inW with hM; wi j= F and hM; wi 6j= [i℄F ,i.e., there exists w0 suh that (w; w0) 2 Ri and hM; w0i 6j= F . But, sine(w; w0) 2 Ri implies w = w0, we must have hM; wi 6j= F , a ontradition.((: if the formula F ! [i℄F is valid in a frame F , then F 2 C). Byontradition: let F be a frame, F ! [i℄F be valid in it, but F 62 C. Thismeans that there exist a pair of worlds (w;w0) 2 Ri with w 6= w0. SineF ! [i℄F is valid in F for all F , in partiular p! [i℄p is valid in F . Now,onsider the model M = hF ; V i, where V (w) = p and V (w0) = ;. Wehave, hM; wi j= p and hM; wi 6j= [i℄p, a ontradition. utProposition 3. The formula [1℄F ^ : : : ^ [n℄F ! F haraterizes thelass of frames C = fhW; C; R1; : : : ; Rni j SiRi is reexivegProof. We onsider n = 2. The generalization to the ase of arbitrary nis straight.(): if F 2 C, then [1℄F ^ [2℄F ! F is valid in F). By ontradition:suppose [1℄F ^ [2℄F ! F not to be valid. This means that there exists amodelM = hF ; V i, and a world w inW with hM; wi j= [1℄F ^ [2℄F (i.e.,hM; wi j= [1℄F and hM; wi j= [2℄F ), and hM; wi 6j= F . Sine R1 [ R2is reexive, (w;w) 2 R1 or (w;w) 2 R2. In both ases the onjuntionof hM; wi j= [1℄F and hM; wi j= [2℄F imply hM; wi j= F , whih is aontradition.((: if [1℄F ^ [2℄F ! F is valid in a frame F , then F 2 C). Byontradition, with F = p: let [1℄p ^ [2℄p ! p be valid in a frame F 62 C,i.e. in a frame inluding a world w suh that (w;w) 62 R1 [ R2. We takea model M = hF ; V i, where V (w0) = p for all w0 with (w;w0) 2 R1 or(w;w0) 2 R2 and V (w00) = ; for all other worlds. Clearly, hM; wi j= [1℄pand hM; wi j= [2℄p, onsequently hM; wi j= p, a ontradition. ut
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10Proposition 4. The formula [i℄[j℄F haraterizes the lass of framesC = fhW; C; R1; : : : ; Rni j Ri \Rj = ;g, for i 6= j.The proof follows the usual shema and it is skipped here, and the sameholds for the proofs of the following propositions. Prop. 5 states thatd[i℄ haraterizes the distributed linearity of R, Prop. 6 states that e[i℄orresponds to the totality of Ri .Proposition 5. The formula �hiiF ! �[i℄F haraterizes the lassof frames C = fhW; C; R; R1; : : : ; Rni j (w;w0); (w;w00) 2 R, w0; w00 2i, imply w0 = w00gProposition 6. The formula hii�F ! �hiiF haraterizes the lassof frames C = fhW; C; R; R1; : : : ; Rni j w 2 Ci implies 9w0 2 i suhthat (w; w0) 2 RgFinally, we observe that relation Ri is symmetri and transitive. Indeed,we proved that formulae F ! [i℄hiiF , and [i℄F ! [i℄[i℄, haraterizingsymmetry and transitivity, respetively, are a onsequene of the axiomsof Set. 4.6 Related WorkVarious extensions of temporal logi to deal with distributed systems havebeen de�ned in the literature. We present and disuss the proposals whihare more losely related to ours.One of the �rst logis de�ned to reason on distributed systems isTTL [8℄. In this logi, for eah loal state of the system, a visibility fun-tion spei�es whih information of remote omponents is aessible. Thevisibility funtion is de�ned on the basis of a relation among states whihis symmetri in the ase of states belonging to distinguished omponents.A trae based extension of linear time temporal logi, alled TrPTL,has been de�ned in [13℄ (see also [14℄). The logi has been designed tobe interpreted over in�nite traes, i.e., labelled partial orders of ations,whih respet some dependene relations assoiated to the alphabet ofations.In [7℄, a temporal logi, StepTL, is de�ned and interpreted over mul-tistep transition systems. These are a well known extension of transitionsystems, allowing to desribe as onurrent the steps of omputation thatan atually be exeuted in parallel. A multistep transition system thusontains transitions of the form sA s0, where A is a set of ations, insteadof a single one.
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11Three distinguished logis are presented in [11℄ to desribe systemsomposed of sets of ommuniating agents. The logis di�erentiate on theamount of information eah agent an have on the other agents running onthe system, but share a ommon setting: agents ommuniate via ommonations. The models for these logis are runs of networks of synhronizingautomata. The logis D0 and D1 presented in [4℄ are based on a similarapproah.Anyway, in all these proposals, omponents ommuniate via some formof synhronization, and logi formulae are interpreted on models shaping:1 : // a // b //  //2 : // d // e��OO // f //In these models, and onsequently in any logi de�ned over them, it isnot possible to express the asymmetri nature of ausality as requiredwhen modelling the behaviour of agents ommuniating asynhronouslyby message passing. Indeed, in the previous model we an both assertthat a auses f and that d auses .Moreover, the model above satis�es a formula like � (h1ib ^ h2ie),impliitly talking about global states. Indeed, if we interpret a logi inthese models, the only way to prevent formulae on ompound states frombeing true in the same time instant is to restrit the formulae syntax insome (often unnatural) way.ConlusionsWe have introdued adtl, a logi to reason on asynhronous distributedsystems ommuniating via message passing. Models for adtl are based onspae{time diagrams, whih reet the asymmetri nature of the ausalrelation in this ase. Further, models built on spae{time diagrams falsifyany formula prediating about global states. Finally, we have introdueda sound axiom system for adtl and proved its orrespondene to the prop-erties of the onsidered frames.An immediate extension of the work presented in this paper is toprove ompleteness and to explore deidability in adtl. Sine Oikos adtlan be de�ned in terms of adtl, deidability results would �nd a naturalappliation in the re�nement alulus we are developing for asynhronoussystems.
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